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Large groups of microtubules are observed to undergo coherent oscillations in length. This process is
suspected to be important to the mechanism of cell division. We propose a model, related to the bounded-
unbounded transition of microtubules proposed by M. Dogterom and S. Leibler@Phys. Rev. Lett.70, 1347
~1993!#, which is in good agreement with experiments.@S1063-651X~96!04306-1#

PACS number~s!: 87.15.2v, 05.40.1j

Collective oscillations in out-of-equilibrium systems are
fascinating problems, and were subject to intense studies in
the past decade. These oscillations have been observed in
many biological systems, which are known to be far from
equilibrium. An important example is the growth of groups
of microtubules, which show oscillations duringin vitro ex-
periments. These oscillations are suspected to play a role
during the cell cycle@2#.

Microtubules ~MTs! are long, rigid polymers made of
a2b tubulin dimers, and form a great part of the cytoskel-
eton of all eukaryotic cells. They are essential for transport
phenomena in the cell, where they are used as rails by mo-
lecular motors like dynein. They also play a crucial role dur-
ing cell division, when the microtubule network is dis-
mantled and assembled again in a short lapse of time. This
last behavior is believed to be related to the so-calleddy-
namic instability, first observed by Mitchison and Kirshner
@3#, and was intensively studied during the last decade~for a
review, see@4#!. The term dynamic instability means that
under certain circumstances, MTs switch randomly between
a growing ~1! and a shrinking~2! state. In the~1! state,
MTs adsorb free GTP-tubulin from solution and increase in
length. Later on, this GTP-tubulin is hydrolyzed and trans-
formed into GDP-tubulin.~GTP stands for guanosine tri-
phosphate and GDP for guanosine diphosphate.! When a MT
switches to the~2! state, it loses its GDP-tubulin and de-
creases in length. The exact nature of the transition is not
known, but it has been proposed that there is a stabilizing
cap of GTP-tubulin on the ends of~1!-MTs. When this cap
is lost by fluctuations, MTs switch to the~2! state and shrink
until the capture of a new stabilizing cap. The existence of
this cap is not yet proved. The dynamic instability has been
observed bothin vitro and in vivo @5–7#.

During a typicalin vitro experiment, tubulin and GTP are
added in a buffer at 4 °C. When the temperature is changed
to 37 °C, MTs nucleate and begin to grow. The mean length
of MTs ~or the total density of polymer!, grows in a mono-
tonic fashion before reaching a plateau. However, when the
initial concentration of tubulin is high enough and when
there exists some mechanism to regenerate GTP-tubulin
~which can be achieved by an excess of free GTP or by
addition of some enzymes!, the polymer density oscillates
with time ~see Fig. 1!, and the amplitude of oscillation can
become very large@8–11#. This means that individual MTs
synchronize themselves and switch between~1! and ~2!
states in a coherent way. This behavior is quite similar to the

well known Belousov-Zhabotinsky oscillations. These oscil-
lations can provide a biological clock at the molecular scale
for the cell ~for a review, see@2#!. Many numerical simula-
tions were performed by different authors@9,12,13# to ex-
plain these oscillations, but the results are, until now, unsat-
isfactory. The most complete work to our knowledge is the
one performed by Marx and Mandelkow@13#, where they
conclude that the basic ingredients of dynamical instability
are not by themselves sufficient to explain smooth, large
scale oscillations observed in experiments.

We show in this paper that the dynamical instability alone
is sufficient to explain oscillations: recently, Dogterom and
Leibler @1# proposed a simple statistical model for MT dy-
namics, and they pointed out a bounded growth to un-
bounded growth transition in MTs~see below!, observed by
several authors@14,15#. We will show that this model, modi-
fied to take into account the GTP-tubulin consumption can
give rise to large sustained oscillations, as observed in ex-
periments.

Let us present the model. Following@1#, we denote

FIG. 1. A typical numerical solution of evolution equations.
v150.1, v250.4, n50.01, f2150.01, f50.1, cT*5100.9,
a50.05,b53, g583.3. Lengths are measured inmm and time in
seconds. Concentration are inmM. Order of magnitude off i ,v i
obtained from Ref.@14#. Bottom curve:c0595; middle curve:
c05110; top curve:c05150.
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p6(z,t) the probability density for finding, at timet, a MT
in the6 state with a length betweenz andz1dz. We can
write the detailed balance equations

] tp152 f12p11 f21p22v1]zp1 , ~1!

] tp25 f12p12 f21p21v2]zp2 , ~2!

where f12 is the catastrophe@switch from ~1! to ~2!# fre-
quency,f21 the rescue@switch from~2! to ~1!# one,v1 the
MT speed in growing andv2 in shrinking state.

These equations have to be supplemented by boundary
conditions. Two cases can be considered:~i! Nucleation on
stable centrosomes;~ii ! spontaneous nucleations. In case~i!,
the probability of empty centrosomes is denoted bys(t) and
the rate of nucleation byn. Then one has@1#

] ts52v1p1~0,t !1v2p2~0,t !, ~3!

ns5v1p1~0,t !. ~4!

In case~ii !, given spontaneous nucleation at raten̄ one
simply has

n̄5v1p1~0,t !. ~5!

This can be formally considered as the limit of cen-
trosome nucleation whens→`, n→0 andns5 n̄ ~note that
in this case,p6 has to be considered as the concentrations of
MTs with their length betweenz andz1dz ands refers to
the concentration of empty sites!.

The above equations have a steady state solution
p65A6exp(2z/l ), where

l 5
v1v2

v2 f122v1 f21
, ~6!

A15
1

l ~11v1 /v2!1v1 /n
, ~7!

A25A1v1 /v2 . ~8!

@In the case of spontaneous nucleation, Eq.~7! has to be
changed toA15 n̄/v1 .# As pointed out by Dogterom and
Leibler, this solution does not exist when
v1 f21.v2 f12 . In this latter case, MTs grow in an un-
bounded regime: Their average length increases linearly in
time and their length distribution becomes a moving Gauss-
ian in the long time limit.

A remark should be made at this point. As demonstrated
by many experiments, all stochastic parameters (f i ,v i ,n)
depend on the GTP-tubulin~GTP-TU! concentrationcT . So,
a variation incT can provoke a transition between a bounded
and an unbounded growth regime. The key point of our os-
cillation model is here: We suppose a dependence of stochas-
tic parameters oncT such that there exists a critical concen-
tration of GTP-TU,cT* , separating an unbounded growth
(cT.cT* ) and a bounded growth (cT,cT* ) regime. If at the
initial time, cT(t50),cT* , MTs grow in a monotonic fash-
ion to reach a plateau, which corresponds to the steady state
solution ~see below!. If, however,cT(t50).cT* , the MTs
grow rapidly in an unbounded regime. As they increase their

length, GTP-TU is consumed,cT becomes smaller thancT*
and MTs mean length decreases to reach the lengthl of the
steady state solution. After a certain time, free GTP in the
solution regenerates GTP-TU from GDP-TU produced by
shrinking MTs, cT then becomes greater thancT* and the
growth resumes. This cycle can be repeated many times. The
transition between the bounded and the unbounded regime
gives the system extreme sensitivity to small changes in pa-
rameter values, and it can be sufficient to induce sustained
oscillations.

Let us complete dynamical Eqs.~1!–~4! to take into ac-
count ~i! the consumption of GTP-TU by growing MTs;~ii !
the production of GDP-TU by shrinking MTs;~iii ! the regen-
eration of GTP-TU from GDP-TU by the action of free GTP
in the solution~GTP1 GDP-TU→ GDP1 GTP-TU!. As
the adsorption of GTP-TU by~1! MTs and the release of
GDP-TU by ~2! MTs take place only at the ends of MTs,
they are respectively proportional to the total number of
growing and shrinking MTs. Then, kinetic equations for the
concentrationscT and cD of GTP-TU and GDP-TU simply
read

] tcT52gv1E
0

`

p1~z,t !dz1acD , ~9!

] tcD5gv2E
0

`

p2~z,t !dz2acD , ~10!

whereg5cmt /a in the case of nucleation on centrosomes
~with cmt the centrosome concentration! or 1/a in the case of
spontaneous nucleation;a is the length of MTs units
~'6 Å!; a is a phenomenological parameter corresponding
to the regeneration rate of GTP-TU from GDP-TU~either
due to the presence of an excess of free GTP or to enzymatic
process! which will be assumed to be time independent. In
the case of regeneration from free GTP,a actually depends
on the concentration of free GTP (cfree), but when cfree
largely exceeds the tubulin concentration~as in most experi-
ments!, a can be assumed to be approximately constant over
the interesting time scale. In the above expressions, we have
neglected spatial dependence of the concentrationscT and
cD , assuming a fast diffusion of species. We will discuss this
point further. As the total number of tubulin dimers in the
solution is conserved during the growth and is equal to the
initial number of tubulinc0 put in the solution, we also have
a conservation equation

cT1cD1gL5c0 , ~11!

whereL5*0
`z@p1(z,t)1p2(z,t)#dz is the mean length of

MTs.
Taking into account the dependence of dynamical param-

eters oncT , we search again for a steady state solution of
Eqs. ~1!–~3!, ~9!–~11!. The expressions given by Eqs.~6!–
~8! remain valid. Using these solutions in Eqs.~9!–~11!, we
obtain a self-consistent solution forcT

cT2c052gFv1

a
l A11l 2~A11A2!G . ~12!

53 6321COLLECTIVE OSCILLATIONS IN MICROTUBULE GROWTH



Note that whencT→cT* , l
2(A11A2)→`, so that Eq.~12!

always has a solution. The graphical solution of this equation
is shown in Fig. 2.

The time-dependent Eqs.~1!–~3!, ~9!–~11! cannot be
solved analytically, and we have to use numerical methods.
Figure 1 shows a typical numerical solution of our model, for
increasing values of the control parameterc0 ~the initial tu-
bulin concentration!. At t50, all MTs have zero length and
cT5c0 . For simplicity, we assume that only one of the dy-
namical parameters, sayf12 , is cT dependent. This choice
was motivated by the work of Walkeret al. @16# who report
a strong dependence off12 on tubulin concentration. The
explicit form of f12 we take reads

f12~cT!5 f $12tanh@~cT2c1!/b#%. ~13!

This particular choice is rather arbitrary, but it is not essen-
tial: the only fundamental ingredient is the critical depen-
dence ofl on cT nearcT* .

As shown in Fig. 1, for weak values ofc0 , (c0,cT* ), the
growth is monotonic, and reaches a plateau after some time.
For c0.cT* , damped oscillations appear. The values of final
plateau correspond to the solutions of Eq.~12!. Finally, when
c0 becomes greater than a critical valuec0* , stable oscilla-
tions are observed. There is a clear transition between a
steady state and an oscillatory one, which corresponds to a
Hopf bifurcation. To study this transition, we have per-
formed a marginal stability analysis. Denotingc̃T the solu-
tion of Eq.~12!, we have computed the temporal behavior of
a small perturbationcT5 c̃T1ecexp(Vt). If the amplification
rate Re~V! is positive, the steady state solution is unstable.
For n@ f21 , f12 , the complex frequencyV was found to
be a solution of@17#:

V~V1a!

v1V/~v11v2!1a
5

f128 gv2

V1 f121 f211~v22v1!/l

3S 12
1

l qD , ~14!

where f128 5] f12 /]cTucT5 c̃T
and q ~which is an implicit

function ofV) is the Re(q).0 root of the dispersion rela-
tion corresponding to the free evolution of MTs@Eqs. ~1!,
~2!#:

2v1v2q
21@V~v22v1!1 f12v22 f21v1#q1V2

1V~ f121 f21!50. ~15!

By numerically solving Eq.~14!, one can easily check
that there exists a critical valuec0* , equal to that found by
numerical resolution of the whole evolution equations.
Re(V) changes its sign and becomes positive when
c0.c0* . The oscillation frequency near the transition is
given by Im(V). ~A similar result is also obtained in the case
of spontaneous nucleation@17#.!

Let us now compare some predictions of the present
model to experimental results. In a typical experiment,L(t)
is studied for various initial tubulin concentrations,c0 . Our
model is able to reproduce quite well the experimental re-
sults using realistic values of the parameters. In particular,
the three different regimes~monotonic, damped, and sus-
tained oscillations! appear quite naturally~see Fig. 1!. It is
interesting to note that the range of initial concentrationc0
for which oscillations are observed lies in the range of un-
bounded growth according to@15#.

Carlieret al. @9# have also studied oscillations for various
values of free GTP concentrationcfree, fixing c0 to a high
value. For weak value ofcfree, L(t) shows a maximum, and
then comes back to a small value. Ascfree increases, oscilla-
tions appear. On the other hand, results published by Wade
et al. @18# showed a monotonic increase of MTs mean length
in the presence of large amount of free GTP in addition to an
enzymatic regenerating of GTP-TU. In our model,cfree does
not appear explicitly, but as a matter of fact, it controls the
restitution rate of GTP-TU from GDP-TU,a (a increases
with cfree). Supposec0@cT* , anda is weak. At timet50,
MTs are in the unbounded regime and their lengths begin to
increase rapidly. During this growth, they consume GTP-TU
and after a timet1 , cT becomes smaller thancT* . The regime
switches to the bounded one, and the mean length of MTs
decreases to reach the equilibrium value. Asa is weak, there
is a little GDP-TU to GTP-TU transformation, not sufficient
to switch back to the unbounded growth: the mean length
reaches a plateau and remains constant. For larger value of
a, cT can reach againcT* after the first maximum occurs and
oscillations reappear. On the other hand, for very large val-
ues ofa ~much larger than other characteristic frequencies of
the model!, the oscillating regime disappears again. The re-
generation of GTP-TU is so fast in this latter case, that it
prevents a great decrease of the MTs mean length. Numerical
solutions of the model for increasing values ofa are shown
in Fig. 3. The appearance and disappearance of the oscilla-
tory instability can also be obtained through the linear stabil-
ity analysis@Eq. ~14!#. These results are in good agreement
with the above mentioned experiments and unify the appar-
ently contradictory results published by different authors.

Note that our model can clearly distinguish the role
played by the parametersc0 and a, in particular, that the
oscillating regime occurs only for a limited range ofa. A

FIG. 2. The graphical solution of the equationcT2c05y(cT),
for various values ofc0 . y(cT) is the right hand side of Eq.~12!.
The dashed part ofy corresponds to unstable solutions.

6322 53B. HOUCHMANDZADEH AND M. VALLADE



schematic diagram which summarizes the various regime of
growth as a function ofc0 anda is shown in Fig. 4.

The numerical resolution of evolution equations also al-
lows us to study the time-dependent length distribution of
MTs When oscillations appear, the length distribution of
MTs P(z)5p1(z)1p2(z) is an asymmetric Gaussian at
times corresponding to maxima ofL(t), which is the signa-
ture of an unbounded growth. At times for whichL(t) is
minimum, a great proportion of MTs are in the~2! state and
P(z) has a more complicated shape, intermediate between an
exponential and a Gaussian. Finally, when oscillations are
damped,P(z) displays the exponential behavior correspond-
ing to the steady state solution. Figure 5 shows these distri-

butions, for the growth corresponding to the middle curve of
Fig. 1. This captures the qualitative behavior observed by
@9#.

Before concluding, let us discuss one approximation of
our model. Here, the nucleation rate of MTs has been con-
sidered as constant. As shown by several authors~see@19#
and references therein!, in the spontaneous nucleation
case, n̄ is srongly cT dependent. This dependence will
change the amplitude and increase the period of oscillations.
However, we have checked numerically that the behavior of
our model does not change notably when an explicit depen-
dence ofn̄ on cT is taken into account and this factor alone
cannot explain sustained oscillations@17#.

In conclusion, we have presented a minimal model of the
MTs to explain collective oscillations duringin vitro growth.
This model does not take into account many features and
details. For example, when MTs shrink, they release oligo-
mers of GDP-TU which are broken later to free GDP-TU.
The chemical equation we used to modelize GDP-TU to
GTP-TU transformation is thus a very simplified one, but it
can be modified to take into account a more complete de-
scription of MTs growth. But this will hide the key point of
our model: the MTs synchronization mechanism is con-
trolled by the bounded to unbounded transition.

Previous work@13# concluded that to explain oscillations,
one has to add extra parameters to the ingredients of dy-
namic instability, or to take into account a memory effect
~long cap model!. We showed here that a simple statistical
model such as that proposed by Dogterom and Leibler@1# is
sufficient to account for oscillations and there is no need to
add any extra parameter. The bounded–to–unbounded tran-
sition provides the extreme sensitivity of MTs to small
GTP-TU concentration variation. One can note that the syn-
chronization of MTs oscillations in the whole space is a con-
sequence of the assumed homogeneity of the tubulin concen-
tration. Actually, the diffusion lengths are finite. This may
induce dephasing of oscillations in different regions of space

FIG. 3. Numerical resolution of evolution equations for various
values ofa. Parameters are those of the top curve of Fig. 1, except
for a. a: a50.005; b:a50.05; c:a50.5.

FIG. 4. Schematic diagram of different types of growth as a
function of the initial concentration of tubulinc0 and the restitution
rate of GTP-TUa. ~I!: monotonic growth;~II !: damped oscillations
and stabilization at a low polymer density;~III !: sustained oscilla-
tion; ~IV !: damped oscillations and stabilization at high polymer
density. The solid line corresponds to a Hopf bifurcation.

FIG. 5. Population distribution at different times during oscilla-
tory growth. Parameters are those of the middle curve of Fig. 1.~a!:
t566.7s ~first maximum!; ~b!: t591.4s ~first minimum!; ~c!:
t5500s ~ final state!.
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and may lead to pattern formation, as in the classical
Belousov-Zhabotinsky scenario. Moving and stationary pat-
terns have actually been observed during MT growth
@20,21#. It would be interesting to extend the present model
to take into account the spatial diffusion of species in order

to explain spatial inhomogeneities and morphological bifur-
cations.

We would like to thank Dr. R.H. Wade for fruitful dis-
cussions.
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